Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations February-2022

ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a What are the types of Charge Distributions? Determine the Electric Field Intensity 6M Due to infiniteSurface Charge.
 - **b** A Point Charge of 20 η c is Located at the Origin .Determine the Magnitude and **6M** Direction of the electric Field Intensity E at the Point (1, 3, -4).

OR

2 Define Capacitance. Write about Different types of Capacitors and derive the **12M** expression for Capacitance.

UNIT-II

- **3 a** Explain Biot-Savart's Law.
 - **b** A Positive Y-axis (Semi Infinite Line with respect to the Origin) Tarries a **6M** Filamentary Current of 2 A in the $-\mathbf{a}_y$ Direction. Assume it is part of a large circuit. Find H at (i) (2,3,0) (ii)(3,12,-4)

OR

4	a Define and Derive Maxwell's Equations for Electric and magnetic Fields.	6M
	b Determine the Magnetic Flux Density due to a Infinite Sheet of Current.	6M
5	 a Define the Following Terms i) Inductance (ii) Mutual Inductance (iii) Generator e.m.f (iv) Magnetic Vector Potential. 	6M
	b Show that $\nabla \times H = J + \partial D / \partial t$.	6M
	OR	
6	a Give the reason why ampere's Law is In-consistence and drive displacement current.	6M
	b Derive the Boundary Conditions for time varying Fields.	6 M
	UNIT-IV	
7	a What is Polarization and explain the Different types of Polarizations.	6M
	b Calculate the reflection coefficient for vertical polarization with oblique incident on	6M
	perfect dielectric	UIVI
	OR	
8	a Define the Conducting Medium and Obtain the Expression for Intrinsic impedance	6M
U	b Define the following	6M
	i) Reflection efficient ii) Transmission Coefficient iii) Surface Impedance	UIVI
	I) Reflection enterent II) Transmission Coefficient III) Surface Impedance	
•		
9	Explain the Construction of the Smith Chart.	12M
	OR	
10	a Define lossless and Distortion less transmission lines and write the Conditions for both.	6M
	b Obtain the input impedance of Transmission line of length I characterized by Z_0 an γd . *** END ***	6M
	Page 1 of 1	

R16

6M